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Abstract—Today several photo platforms provide thousands
of new pictures, it becomes ambitious to find highly appealing
or like-able photos within such loads of data. Here, automatic
liking prediction can support users in handling their pictures or
improve ranking in sharing platforms. We describe a machine
learning approach for photo liking prediction. Our features
are based on various techniques, e.g. natural language process-
ing/sentiment analysis, pre-trained deep learning networks, social
network analysis and extended previously reported features. We
conduct large-scale experiments using a collected dataset consist-
ing of 80k photos based on two main categories from 500px with
different settings. In our experiments we analyzed the impact
of our newly features and found that social network features
have the strongest influence for liking prediction, we achived
a boost of 15%. Furthermore, we show that all implemented
features are able to improve prediction accuracy of liking rates.
We additionally analyze which groups of features that can be
derived directly from pictures are usable for prediction.

I. INTRODUCTION

Today thousands of pictures are uploaded every hour on
photo-sharing platforms1, such as Flickr, 500px, DeviantArt,
Instagram, because it is easy to take and share pictures there.
You can use your smart-phone’s camera in various situations
or places, and with the ease of the mobile internet, uploading
and sharing can be done within seconds. Considering the
enormous amount of new photos it is more and more important
to filter and rate uploaded photos based on their appeal or
expected liking. For a user it is crucial to know which of the
uploaded photos are of high appeal and will most probably
be liked by other people. In general, the image liking in the
context of a photo sharing site is based on different types
of factors, for example perspective, lightning, colors, subject
and framing [4]. Also, other factors influence liking, e.g., user
preferences, photo category, position and reputation of the
user and the spectators. Photo-sharing platforms also include
typical view- and liking-counters, category tagging, and a
commenting section. Mostly they are combined with a social
network, in order to let users form similar interest groups
where they can exchange their knowledge with each other.

After uploading a photo to such a platform a temporal
process starts, in which users will rate uploaded pictures, view,
comment or share them, and these properties will change over
time [22]. Imagine you have some nice looking pictures (e.g.
taken with different camera settings, cropping or subjects) and

1for Flickr: average 1.68 million photos per day for 2016, see https://www.
flickr.com/photos/franckmichel/6855169886/

you do not know which of them you should upload on a
photo-platform. One option is that you consider friends for
helping you in your photo selection, however it depends on
their expertise how they will appreciate and rate your photos.
This problem formulation leads to the main research question
of our paper: We will analyze if it is possible to automatically
predict photo liking. For photo-liking estimation we use the
like-view rate (#likes/#views) as the targeted key indicator.
Its behavior can be illustrated as follows: When a lot of people
who viewed a photo also liked it, this photo is suspected
to have a high likability and will also be liked by other
users. Furthermore, other applications are possible, e.g., video
thumbnail generation [19] or image ranking.

We will use different feature types for liking estimation,
that are based on machine learning or new analysis techniques.
In general, features based on well-known rules of thumb for
photo aesthetics can be extracted using computer vision ap-
proaches [3, 7]. In this paper, we will include complementary
features, which consider typical photo-sharing aspects and the
provided meta knowledge. Our features include comments,
social network data, image classifiers, and pre-trained deep
learning networks in combination with several machine learn-
ing techniques.

Most of all features for aesthetic prediction in the literature
only use photo-related aspects. There are some based on social
network analysis [21], however they were not combined with
other analysis approaches, or are only based on restricted
social-media knowledge. One reason for this observation could
be that most publicly available image datasets do not include
social or meta-data, due to the contained user-specific profile-
data. These problems can be circumvented to some extent, if
the datasets are stored in an anonymized way.

Our general idea is to use analysis techniques to derive fea-
tures and combine them with classical image-related features.
After deriving and defining all features, we will describe the
details of our regression-based approach for prediction of like-
view rates.

The effectiveness of our new features will be evaluated in
a large-scale experiment using images and meta information
from the 500px photo sharing platform. We consider dif-
ferent feature groups (technical, low-level, high-level, social-
network-based and deep-learning-based) to show, in different
experimental settings, that our new features can improve
regression accuracy for like-view rate predictions.



II. RELATED WORK

We first briefly review the literature and features for aes-
thetic and liking estimation of images. Furthermore, we will
analyze previous approaches for image liking prediction and
compare them considering ideas for extensions. Important is a

Fig. 1. How humans rate aesthetic and decide liking, based on [10].

proper definition of photo aesthetic appeal based on a generally
workable understanding of the term. With the complementary
analysis of social network aspects we acknowledge that appeal
and liking may be correlated, yet are not the same [18,
5]. Human rating of images and in a social platform liking
decisions depends on several influence factors. In Figure 1
a summarized and extended (for the final liking decision)
view of Leder et al.’s model of aesthetics ratings is presented.
Three main factors (that influence each other) are important
for human aesthetics judgment: the photo, the context and the
social influences [10]. Finally, based on the aesthetics rating
and social impact of a shared photo the human will decide if
the photo will be liked or not. Liking prediction is therefore
related to aesthetic prediction combined with image appeal
(e.g. technical properties of the image) and social network
properties of the user (e.g. usage pattern of the user, users
community, . . . ).

A. Principles of Photo Aesthetic/Appeal

Joshi et al. analyze perception of aesthetics as a function of
artwork, intent of artist, genre of art, perception, . . . and level
of experience of the viewer [6]. They differentiate aesthetic in
two general terms, ‘true aesthetics’ and ‘observed aesthetics’.
For ‘true aesthetics’ an infinite expertise is required, consid-
ering a global view of all images, and ‘observed aesthetics’
subjectively depends on the observer’s attitude. There are
several open questions and problems in the field of image
aesthetics, for example for artwork characterization, the social
impact of aesthetics, or users’ emotion prediction. Real-world
imaging applications can benefit from an estimated value of
aesthetics, such as image retrieval systems or camera guides.
The meta information from photo-sharing platforms can be
used to provide additional information for analysis of the
users’ impact on image aesthetics, for example in terms of their
role and own expertise [9, 8]. Here already, the lines between
aesthetics and liking are starting to get blurred. Considering
that image aesthetics are assessed by individual viewers, it is
clear that users’ experiences and social network have a large
impact on perceived image quality. For example, Lebreton
et al. analyzed relations between the users’ knowledge in
photography and their rating behavior in a crowd-sourcing
study [9].

B. Feature Definition and Prediction Approaches

Previous research is based on feature sets that were derived
using low level image properties, meta-data and community
effects. For example, Datta et al. defined low-level visual
features such as exposure of light and colorfulness, aver-
age saturation and hue, rule-of-thirds-based values, . . . [3]
They used feature selection and classification or regression
approaches for image appeal based on a dataset of about
3500 images. When using all 15 defined features they were
able to achieve a classification accuracy of about 70%, in
contrast to rather bad results obtained for their regression
experiment. Wu et al. used an SVM-based approach with
a sigmoidal softening function and distinguished six classes
from good to ugly of image appeal [23]. The authors used
a dataset containing approximately 11k photos from Flickr
and extracted low-level features (similar to [3] combined with
some new features). Features are based on the HSV color
space (average values for global or central hue, saturation, and
value), position of the main object and colorfulness (using
color histograms), combined to a 39- dimensional feature
vector. In general, the SVM and sigmoidal softening approach
is able to perform well (around 0.8 prediction accuracy).
The influence of image aesthetics on liking in photo-sharing
platforms is based on more than only low-level features.
Subject, image composition and social influences are other
factors for aesthetics and liking. Khosla et al. extended low-
level features with computer vision features [7]. They analyze
popularity of photos in terms of log-normalization of view
count using a large dataset from Flickr with approximately
400k users. For view-count estimation, they use an SVR
approach with three feature groups: low-level features (e.g.
HSV color space, color histograms, similar to [23]), computer-
vision features (e.g. ImageNet classification, color patches)
and high-level features (e.g. object recognition, social cues).
Best results, with a rank correlation of approximately 0.8, were
achieved using all feature groups. Their high-level features are
based on the social network part of Flickr, e.g., mean views of
all pictures of a user, photo count of a user, number of contacts,
title length, and more. These social-network features can be
extended, e.g., a typical photo title includes more semantic
information. Such a title is a short summary of the photo
and what the photographer wants to express. Comparing with
photo tags a new feature can be derived that is measuring
semantic similarity of title and tags using, e.g., word vector
representations calculated using Mikolov et al.’s [13] model.

Most analyzed approaches for image aesthetics do not
combine all of our identified different features. Therefore,
only subsets of feature groups based on object description,
sentiment, technical features, deep learning, computer vision
features, or social network effects were already analyzed in
the aforementioned literature.

Our approach combines and extends all of these features to
estimate liking values. We are able to compare our new gen-
erated features with already published feature sets, analyzing
the introduced performance gains.



III. OUR APPROACH

Fig. 2. Steps of our Machine Learning Framework: (1) pictures, additional
data were used for extraction of defined features (2) and prediction values for
training or using a machine learning algorithm (3).

Our general approach is divided into two phases using
three steps each, see Figure 2. To predict liking values we
use a machine learning approach implemented with scikit-
learn [15]. For each photo we assume that the image itself,
meta information (e.g. camera type, exposure) and some social
data is available (1). As first phase we train a machine learning
algorithm with calculated features (2) for each photo of the
training set, so that a model (3) can be derived. For training,
it is required that we know the prediction values. The second
phase in our approach needs a set of photos with all additional
feature-related information, which we use to estimate like/view
rate values. In our pipeline, we use feature selection based
on an extra tree regression approach to decrease feature space
dimensionality, so that only important features will be included
in our last step. As final step, we use a random forest
regression model. We analyzed and optimized the number of
used trees in small experiments and found that 100 decision
trees are a good trade-off for speed and prediction performance
(all other parameters performed best using default values).
Furthermore, we analyzed in small experiments (sample of
3600 images) which prediction variable should be used. Most
like/view rates were small numeric values in a small range, so
we finally used a modified rate log(#likes)/log(#views) as
the liking prediction variable to circumvent these problems.
These values are in a wider range and less numerically
unstable than pure like/view rates. In the next sections we will
show all features and describe how they can be calculated.

A. Technical Features

Modern cameras store a lot of meta information when
shooting a photo, e.g., camera settings (lens data, aperture,
camera model, exposure time) or date and location. We will
use all these stored meta information of a given picture.
We assume that some technical settings clearly influence the
appeal of a photo. For example if you want to smooth water
disturbances in a photo of a waterfall, you need to increase
the exposure time. For date-information we extract hour of day
and week of the year (season indicator) as feature values, e.g.,
to considerate that photos taken in the noonday sun have a
worse quality than photos shot at a different time of day. Not
all technical rules can be applied to every picture in every
scenario, however they can be used as a starting point. How
technical features perform for image liking prediction is one
question that we will analyze in our experiments in Section IV.

B. Low-level Features

We define low-level features as quickly calculable features
that are based on image analysis or filters. Wu et al. suc-
cessfully used a number of such low-level features. We will
use global hue, saturation and value, and extend central HSV
using sub-images based on rule-of-thirds. So for every sub-
image (1...9) we calculate mean values for HSV as features
as subimageH/S/V 1. . . 9. Additionally, we store minimum and
maximum indices of each sub-image’s HSV values for deter-
mination of important or non-important regions of the image.
We here assume that the most important image information
is located in one of the sub-images, Wu et al. only assumes
that this is in the center. Another feature that is based on ideas
from [23, 3] is our color-distribution feature. We extended it by
using a histogram of up to 1000 distinct color values. A further
feature is image noise. Because noise pixels will influence per-
ception of details or filled areas. Image noise mostly depends
on the camera sensor and environmental factors. For a coarse
estimation, we apply a simple median noise reduction filter on
a given image and calculate differences to the original image
as NoiseDiff feature. Therefore, NoiseDiff is an indicator of
how much noise was in the given picture, or how many
changes were applied by the simple de-noising. EdgeRatio
works similar to NoiseDiff. We apply an edge detector on a
given image and calculate the ratio of detected edge-pixels to
all pixels. EdgeRatio is an indicator of how many edges are
present in a given image. Considering that some appealing
images have fewer edges or at least the main object is not
dominating the whole image.

C. High-level Features

In contrast to low-level features, our high-level features
depend on the user. We define high-level features as features
that are based on user’s knowledge and interaction during the
upload, e.g., assigning tags, title or descriptions. They cannot
be derived directly based on image analysis. We extend a pure
title length feature [7] with natural language processing using
nltk [1] to several features. First of all, titleWordCount is the
total count of tokenized title words, we use a reg-ex based
tokenizer for tweets. Second, titleNonStopWordCount is the
count of tokenized non stop words in a title. It is based on the
observation that stop words in titles are mostly just fill words
(stop words are typically excluded during natural language
processing). We also define titleWordLenDist as a histogram of
tokenized title word lengths. As further extended features, we
calculate titleTagWordSim as word vector similarity of title and
tags using word2vec [13], titleTagJaccSim as Jaccard similarity
of tag and title word tokens and titleSentiments as sentiment
classification values (similar to comment sentiments). We
define these similarity features to measure the intention of the
title, e.g. is the title related to the subject that the photographer
selected. Finally, to sum up, our high-level features are only
based on additional information that e.g. a photographer would
add in a private photo collection and that are mostly added in
photo sharing platforms.



D. Features using pre-trained Deep Neural Networks (DNNs)

We use several pre-trained deep neural networks to generate
features for our framework. Using those pre-trained networks
for different image tasks (object classification, similarity or
face and age detection) we are able to assign each feature a
meaning that can be used in a later evaluation to derive liking
rules. DNNs perform well for several image analysis problems,
which is why we will use a pre-trained image classification
model [20] to derive new features. In our framework, two
multi-value features will be calculated based on the inception
network [20]. First, we predict top-5 classes with associated
scores and use these values classDistScores as distribution
feature. Using classDistScores we are able to analyze what
content is shown in the picture, to get a deeper understanding
of the subject. Our second DNN-feature called lastLayerValues
uses next-to-last layer of inception as feature vector, consisting
of distinct 2048 values. To derive another set of features we
use techniques from image retrieval [11]. Based on a deep
learning network for calculation of image similarity hashes
we conclude two new features, Hash and HashProbs. The
first feature Hash is the hash value as integer, because we
assume that similar images have similar appeal. For the second
feature HashProbs we use the provided probabilities (48 float
values) of next-to-last layer. There are often times faces and
people on images that show high appeal, for example portrait
photos. Hence, we use gender, age [16, 17], and face [14]
detection networks and derive Age, Gender, FaceCount, and
MaxProbFace as features. FaceCount is based on an estimation
of probabilities for pre-trained faces and filtering by a given
threshold. For this reason we also define MaxProbFace as
feature, it serves as indicator for how accurate the feature
FaceCount is. The DNN-features can be calculated using only
the provided images, so that this feature group is independent
of meta or social network data and can later be used in a
scenario where only the access to the image is possible.

E. Social Network (SN) Features

We define social-network features as features that are
based on comments and social network characteristics. For
comments we use sentiment classification, because users’
comments are able to describe and judge images. A pre-
trained sentiment classifier [12] is used to calculate polarity
and subjectivity values for a given text. For all comments
C = [c1, .., cn] individually we extract the following values:
median, mean, and variance values of all polarity and subjec-
tivity measurements. Additionally, we combine all comments
to one text and calculate global values. In sum, we specify
eight features for each picture using sentiment of comments
as commentSentiment. Furthermore, we calculate median, av-
erage, variance, maximum, and minimum of lengths for each
comment word using a tokenizer [1] as commentWordLength.
Based on features introduced in [7] we define usersAffection,
followers-, friends-, galleries-, groups-, favorites- and photo-
sCount in a similar way, they are provided directly in the
500px platform. We also define the friend’s comment rate,
assuming that friends’ comments may have a large impact in

TABLE I
FEATURE GROUPS, S=STRING, I=INTEGER, F=FLOAT, M=MULTIPLE,
SN=SOCIAL NETWORK, LN=LOCAL NETWORK, * INPUT DEPENDENT

Group Name Type Src Dim

Technical cameraType, locationName S meta 2
focalLength, ISOValue, shutterSpeed I meta 3
latitude, longitude, aperture F meta 3
height, width, dateInfos I meta 4

Low-Level globalHue/Sat/Val F img 3
subimageHue/Sat/Val 1. . . 9 MF img 27
max/min index of SubImgHue/Sat/Val MI img 8
colorDist, noiseDiff, edgeRatio MF img *+2

High-Level titleWordCount, -NonStopWordCount I meta 2
titleWordLenDist MI meta *
titleTagJaccSim, -TagWordSim, -Sent F meta 3

DNNs classDistScores, lastLayerValues MF img 2053
hash, hashProbs I img 49
age, gender, faceCount, maxProbFace F img 4

SN commentSentiment, -WordLengthDist MF com 6+*
comment, friendCommentRate MF com *+1
followers/friends/galleries/groups-Count I user 3
userAffection/photos/favorites-Count I user 3
LN-triangleCount/MeanFoFCount I user 2
LN-2hopReachableUsers I user 1

a user’s local social network. friendCommentRate is defined
as ratio of how many friends commented on a photo to all
comments. For example, if the local network of a given user is
large, many users will be reached after submitting a photo, and
it is easier to like photos of friends. We also introduce three
new features based on social network analysis of the local
network view. Because local friends are more important, we
will only analyze a maximum of 3-hop-friends. triangleCount
is based on counting triangles in a graph and is a reduced form
of the centrality metric for social networks [2]. We assume
that the local network of a user u is a graph Gu = (V,E)
based on extracted values for friends of friends. For each 3-
vertex clique of u we count one triangle, assuming that a
higher connectivity in a local social network will speed-up
commenting and rating of a photo in such a platform. We
further define the mean friend count of all friends of a given
user u as MeanFoFCount. So we calculate average friends
count of each second level friend of u (a second level friend
of u is a friend of a friend of u). Our last new feature is
based on counting how many users can be reached in our
local network. It is defined using the number of friends that
are reachable in two steps in Gu starting from u and named
as 2hopReachableUsers. 2hopReachableUsers is an indicator
of how many friends are reachable in two steps based on a
user u in our local social-network Gu.

F. Summary of Features

Table I summarizes all presented features detailed. For
example, feature commentSentiment in feature group social
network is a multi-value float feature based on comments of a
given image. For all defined features we specify which source
is required (image, meta data, user info or comments). In
summary, we defined 11 technical, 39 low-level, five high-
level, 13 social network and eight deep learning feature-sets,
whereby a high dimensional feature space is defined (most
features have multiple values). To avoid that our final system
just uses, e.g. DNN based features, we use a feature selection
step (that filters our unimportant features).



IV. EXPERIMENTAL EVALUATION

We conducted two experiments for evaluation of our ap-
proach. Our first experiment IV-A uses different feature group
settings with a small dataset to compare the effectiveness of
our added features to that of the low-level features (LLF). The
main goal of our first experiment is to evaluate how much our
new features will improve regression accuracy. Due to the fact
that low-level features were already studied in several other
experiments [23, 3] we will use the performance obtained with
these features as reference baseline. Also, our LLF features are
mostly a pure re-implementation of state-of-the art features.
Experiment IV-B will focus on two feature sets, namely ALL
and the photo-derivable features (OPD) compared to low-level
features and use large datasets for a representative analysis.
We downloaded pictures, meta-, and social data from 500px
of two categories (“editors” and “fresh”) using the provided
API.

TABLE II
CRAWLED 500PX IMAGES; USED SAMPLES FOR EXPERIMENTS.

discover-category # crawled log(#like)/log(#view) rate r
/ sample pictures min r max r r σ(r)

editors 20975 0.43 0.83 0.68 0.05
fresh 59130 0.10 0.86 0.62 0.11

sample9000 9000 0.10 0.82 0.62 0.11
combined20k 20000 0.11 0.83 0.65 0.09
all80k 80105 0.10 0.86 0.63 0.10

Furthermore, in Table II our dataset composition is summa-
rized. In our first experiment we will use a randomly chosen
sample from our “fresh” images (sample9000). Sample9000
has similar rate properties as the fresh category, min, max,
mean and standard deviation are approximately equal, for
visualization and finding first directions a smaller sample is
more suitable. In our second experiment we used a combi-
nation of 20k randomly selected fresh and editors images as
dataset (combined20k), with 10k images per each of the two
categories. Furthermore, we use in our second experiment a
dataset that is a combination of all images of both categories
with approximately 80k images.

A. Feature Groups Evaluation

For comparison of our newly provided features we used our
low-level features as reference, because similar low-level fea-
ture sets were already used in different other experiments [3,
23]. As dataset we use sample9000. We trained two regres-
sion algorithms and performed a 10-fold cross validation. In
Figure 3 we compare a trained prediction system with all
implemented features (ALL) with a predictor that uses only
low-level image features (LLF). It is notable that LLF predicts
more frequent values for like/view-rates around 0.6 than ALL
and also observed in the actual image data. ALL better fits
the original rate than LLF. Furthermore, we calculated RMSE
(root mean square error) and R2 (correlation coefficient of
determination) for both experimental settings ALL and LLF.
For LLF we obtained an RMSE of 0.108 and a R2 of 0.072
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Fig. 3. Distribution of real log(#likes)/log(#views) and predicted values
of ALL and LFF for sample9000. Note: similiar distributions can include false-
predictions.

compared to ALL’s RMSE of 0.098 and R2 of 0.231. Even if
ALL is just 10% better comparing the RMSE, the R2 of LLF
is approx 0.1, that means, that there is no linear correlation
to the original rates. The R2 for ALL is better and indicates a
(though still low) linear correlation. In contrast to classification
experiments from the literature we use a regression model
that’s why a direct comparison is not possible. We further
analyzed the specific impact of our features in this experiment
(top-10 important features). The most important features for
LLF are noiseDiff, colorDistribution and subimageHue 1. . . 9.
For OPD features based on our pre-trained DNNs dominate the
important features (lastLayerValues and hashProbs). Highly
interesting results can be observed in the ALL feature set. The
most important features in this experiment are social network
comment features, photo count and lastLayerValues of our
DNNs. In our general machine learning pipeline, our first step
is selecting important features, hence a small analysis of how
many features are important for each feature-set was applied.
For LLF, 439 of 1370 features were used in the final prediction.
The set ALL uses 2297 out of 7943 distinct features.

Furthermore, it can be observed that each single feature has
only a small impact on prediction of like/view rates. Hence,
for a better feature evaluation we performed a leave-one-out
analysis, based on our defined feature groups (technical, low-
level, high-level, social network (SN), and DNNs).

In Table III the results for our leave-one-out approach are
summarized. Especially noticeable is that leaving out social
network features will significantly decrease the R2 value, so
that our model correlates less well with the original values.
This proves our hypothesis that social network features have
a high impact on photo liking. In general, all RMSE values
are similar, furthermore low-level, technical, and high-level
features have about the same influence on R2.

B. Photo-subject Derivable Features

In this experiment we will further analyze features that
are deducible based on a given photo content, referred to as

TABLE III
RMSE AND R2 FOR LEAVE-ONE-OUT EXPERIMENT; SAMPLE9000.

leave-out-feature technical low-level high-level SN DNNs

RMSE 0.098 0.098 0.098 0.104 0.097
R2 0.233 0.228 0.229 0.135 0.255



OPD in comparison to our other feature sets. OPD includes
the technical, low-level and deep neural network features. In
our feature-set OPD, no social input based on comments or a
user’s network is required. Thus, this feature-set is important
for a pure like-view estimation if for example a user is
new in a photo sharing platform. We compare, similar to
Experiment IV-A, the performance with our added features to
that obtained with the low-level features LLF. We also perform
a 10-fold-cross validation for each sub-experiment.

TABLE IV
EVALUATION ALL, OPD AND LLF, * HIGHLIGHTS BEST VALUE.

RMSE ALL OPD LLF R2 ALL OPD LLF

sample9000 0.098* 0.105 0.108 0.231* 0.128 0.072
combined20k 0.077* 0.088 0.091 0.326* 0.114 0.056
all80k 0.085* 0.096 0.099 0.329* 0.139 0.091

In Table IV all results for our 10-fold large experiments
are summarized. We calculated, for each feature group ALL,
LLF, OPD, and each used dataset the resulting RMSE and R2

values. For sample9000 ALL performs ≈ 9% better compared
to LLF for RMSE , for combined20k we achieved a boost by ≈
15% RMSE and for all80k the performance is approximately
≈ 14% better . The R2 values for ALL are always better than
for LLF, that means ALL yields a higher linear correlation than
LLF. For LLF all R2 values are approximately zero, so that no
correlation occurs. The social and high-level impact of photo-
sharing platforms cannot be modeled using LLF.

Comparing to Experiment IV-A, social network features
have a similarly high impact in Experiment IV-B. We can
conclude that ALL performs as best and OPD can be used
for an approximation of image liking if a user just started in
the photo sharing platform and has less social connections or
impact.

V. CONCLUSION

We introduced a framework for image-liking prediction us-
ing an extended set of features. Our features are not only based
on pure image information. They include social media and
meta information as well as comments. For the first time we
combined several analyses and machine learning approaches
of social network analysis, natural language processing and
deep learning in order to estimate liking values of photos.
Our experimental evaluation showed that such a regression
approach performs 15% better in terms of RMSE and for
R2 when using our newly introduced features than a system
using only low-level features of images. Further, we found
that social network features have the largest impact on image
liking prediction. Moreover, the dataset we created for this
study, based on images, meta information, social network data
can be used for several future experiments. Image liking is
based on various factors and is hard to predict. So far we only
used log(#likes)/log(#views) rates for prediction, however
there are further indicators for image liking and appeal than
like/view rates, which may be influenced by psychological
aspects, temporal effects, fashion effects, and art. For our

large-scale experiments, those factors could not be excluded,
because they are intrinsic to human perception and experience.
Further analysis of such influences should be conducted.
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